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HIGHER-ORDER DEGENERATE ¢-BERNOULLI POLYNOMIALS

TAEKYUN KIM AND GWAN-WOO JANG

ABSTRACT. In this paper, we study the higher-order degenerate g-Bernoulli
polynomials which are derived from the p-adic g-integrals on Zj,. In addition,
we give some identities and properties for these polynomials.

1. INTRODUCTION

Let p be a fixed prime number. Throughout this paper, Z,,, Q, and C,, will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
the algebraic closure of Q,. The p-adic norm is normalized as |p|, = % As is well
known, Carlitz’s degenerate Bernoulli polynomials are defined by the generating
function

(1.1) L 1+ =Y Bl | N % (see [4, 5]) .

1+ )% -1 =

When 2 = 0, 3, (A) = 3, (0] \) are called the degenerate Benroulli numbers.
Note that limy_,0 8, (x| A\) = By, (2), (n >0), where B, (x) are called ordinary
Bernoulli polynomials.

For r» € N, the higher-order degenerate Bernoulli numbers are also given by the
generating function

t " - n
1.2 L ) et =380 @)
(12) ((me_l)( FeS NG

When 2 = 0, 87 (0] A) = B8 (\) are called the degenerate Bernoulli numbers
of order r(see [5]). Note that limy_ 85 (x| A) = BY” (), (n > 0), where B (x)
are the higher-order Bernoulli polynomials given by the generating function

(1.3) (ett_1> e’ =3B (x)%, (see [1-13]).

n=0

Let ¢ € C, be an indeterminate with |1 — q\p < p_v+1. Then Carlitz’s ¢-
Benroulli numbers are defined as

1 ifn=1

q 2077
0 ifn>1, Poa

(14) q (qﬁq + 1)’" - Bn,q = {
with the usual convention about replacing 8; by £, (see [9, 10]).
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The ¢-Bernoulli polynomials are also defined by Carlitz as follows:

n

n n—l

(15) (@)= 3 (7)o loly o (s 4,6,
1=0

where [z] = 11";.

Let f be a uniformly differentiable function on Z,. Then the p-adic ¢-integral

on Zj, is defined by Kim and given by

o) [ S = 3 @ ' 2)
v z=0
=V, 2 (0 e ),

From (1.6), we note that
. D — P . q— 1 /
(L.7) q/zpf(wrl)duq(l)—/pr(x)duq(w)ﬂq—l)f(0)+@f (0).

By (1.7), we get

18)  af v tydug @)~ [ ol dug (0) = (g - D04 0!
P Zy

qg—1 ifn=0,

=<1 ifn =1,

0 if n>1.

It is easy to show that

(1.9) w1y = (1+ q[x]q)n
=> 7)(11[1]5,
=0
From (1.8) and (1.9), we have
n . . q—l 1fn:0,
(1.10) Vo [ (2l dpg (@) = [ 2]l dpg (2) = {1 if =1,
D A i I

In [9], Kim proved that Carlitz’s ¢g-Bernoulli numbers can be represented by the
p-adic g-integral on Z,, as follows:

(1.11) [ Wl @ = g (020,
By (1.10) and (1.11), we get
n g—1 ifn=0,
n .
(1.12) qz <l>qlﬁl,q —Bng=11 ifn=1,
=0 0 ifn>1
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The Carlitz’s g-Bernoulli polynomials are also written by the p-adic g-integral
on Z, as follows:

(113) / o+l g ()= 3 (7)e [ ol iy () ol

=0

Z()q fralell™ (02 0).

The generating function of Carlitz’s g-Bernoulli polynomials is given by

(1.14) /Z el latdp, (y) = Zﬁnq

P n=0

Note that e! = limy_0 (1 + /\t)%.
Recently, the degenerate ¢-Bernoulli polynomials are introduced by Kim and
given by

(1.15) /Z (14 20349 gy () = Zﬂnq o] /\)—., (see [10]).

When z = 0, 8,4 (0| X) are called the degenerate ¢g-Bernoulli numbers. It is not
difficult to show that imx_0 Bnq (2 | A) = Bn.,q (@).

In this paper, we study the degenerate higher-order g-Bernoulli polynomials and
numbers which are derived from the p-adic g-integrals on Z, and investigate some
properties of these polynomials and numbers.

Recently, the ¢-Bernoulli and degenerate Bernoulli polynomials have been stud-
ied by many researchers. (see [1-13]).

2. HIGHER-ORDER DEGENERATE ¢- BERNOULLI POLYNOMIALS

Let h,k be positive integers and let us define the degenerate higher-order g-
Bernoulli polynomials as follows:

e Y8 |0
n=0

o e e o)
P P

k—times
Now, we note that
(2.2)

g g [z1+ - +op+a], W o bk
/ / (1+ At) P qw1( —1)+w2(h—=2)+ -+ (h— ')d/Lq (Il)"'dllfq (x1)

[z14-- +u +a],
- Z /k ( )qml(h_1)+w2(h_2)+m+wk(h_k)dﬂq (Il) - dpig (Ik) A"t"
Z

n=0

" l‘ + -4+ axt+x 21 (h— ctaxp(h—k t

n=0

53
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where
i f (wlv cee a‘Lk) d,qu (111) ce dﬂq (»Lk)
= [ e dug ) dug )
Ly Ly
k—times
and

() B () ()

— " [:L,](I (['L]q _ )\) ([”q _ 2/\) ([‘L]q —(n—-1) /\)

=27 (lal, 1)
Therefore, (2.1), (2.2) and (2.3), we obtain the following theorem.

Theorem 1. Forn > 0, we have

/Zp-~-/zp([w1+~-~+wk+w]q’)\)n
N

k—times

xR R gy (1) - dpg () = B0 (x| A).
‘We observe that
) =" <[w1+-~+xk+w}q)
n A n

" T+t ap
:)\”ZSl (n,1) ([ ! 3 i LI)
1=0

=S ()N oy + g+l

(2.4) ([1‘1+---+:L'k+w]q

l

where Sp (n,l) is the Stirling number of the first kind.
From Theorem 1 and (2.4), we note that

(2.5)

Big (@[ X) =D S () A"

P P
————
k—times
n
ZZS(,LZ)\nl Z( )rru_)m
=0 1—(] m=0

" (m+h)y(m+h—-1)---(m+h—k+1)
[m+h], [m+h—1], - [m+h—-k+1],
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n

l
l
AP\ l ma o (_q m
> s () e -

1=0 m=o (1 —
(m i)(m—l—h—l) (m+h—-k+1)
hl,

[m+h], [m+h—1] - [m+h-k+1],
m( 1 vne m+h), .
_ZZ ( ) )™ (1) A 151(7%1),,&%—,)_"'1(1 ",
=0 m=0 (q tqh)y,

where (2 :q), =(1—2)(1—xq) - (1—2¢" ') (n>1), (x:q)y = 1.
Therefore, by (2.5), we obtain the following theorem.

Theorem 2. Forn > 0, we have

. m —1 e m+h ma
/3'£L}qk) ‘L | )‘ E E < > 1) - q)k l)‘ lSl (TL, l) (qrgH-h . qzksl) g
. k

=0 m=0
Note that
n
. (hK) (. _ n 1\ kn (7” + h)k max

= m (qm—HL . q_l)k

=Bk (), (see [9, 10]).

n,q

In [4], L. Carlitz introduced the higher-order ¢-Bernoulli polynomials which are
given by
1 " (m i e +h)
(h k) —1Y J* k
9 (0) = =g q)m;o(j)< Y o

where [j + Al = [+l i +h=1], [ +h—-k+1],.
By (2.5), we easily get

(2.6) g (@ | N)

n,q

=251(”»l))\"_l/ / [w1+~~~+wk¢+w}fl

Jl(h 1)+ Aay (h— k)+1d'u (ﬁl)"'(iltq (‘Lk)

—251 n, ) N~ l{ qfl)/ / [v1+ -+ +L]l+1

qul(h 2)+-+zp(h—k— l)d,u(](

x1) - dpg (Tg)
+/ / w1 + -+ g + ], g Mmook
Xdpig (1) -+ - dpg (1) }

G0 (@ | )+ 381 (DA (g = 1) B (@),
=0

From (2.6), we have

2.7 ¢"BR (| X) — B (2| A) = (¢ - 1) Zsl (n, ) ALBITER ().

=0
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Therefore, by (2.7), we obtain the following theorem.

Theorem 3. Forn > 0, we have

FHP @ X) — B (@] ) = (- )81 () NI ()

I+1,q9
=0

where 5n q (L) are Carlitz’s higher-order q-Bernoulli polynomials.
We consider the polynomials ﬁfu} ) (] A)in ¢*
(2.8)

B (@A)

n,q

=/ / ([w+$1+"‘+$k]q | A)nq—flll—QIIJz—-n—ka'kduq (:L'1)~~-duq (‘Lk)

—Z)\" 151 n,l) /

/ [.’I, tap b+ wk]fl q—rm—?:ﬁz—..-—kmkduq (-7/1) . d.“’(] (:Lk')
Zy

Zyp
n l
- ! m ome Mm—1)-(m—k+1)
NS (ny 1) (1 —q) ! ( > (—1)™ g™

lg 7;0 m [m]q [m — 1](1 o [m—k+ 1](1
_ZZ< ) 7 (1 ) )

=0 m=0 <q g )k:

Note that

lim /3§L0’k) (| N

_ Z ( ) N (1 _q)k—n (".’L)k

m=0 (qm : q_l)k
7n 7 —n
— Z ( ) na (1 _ (1) ([Tn])k
m=0 k

=By ().
By (2.8), we get
(2.9)

0,k) (.. 0,k
IB’SL(I)('L_'_I‘)\)_ ’I(L(I)("L‘)\)

— Z Z ( > m A (1 _ q)—l S, (’fL,l) (quz(w+1) _ qmw)

=0 m=0
m(m-—1)---(m—k+1)

[m]q [m—1], - [m—k+1],
=53 (DY eyt s
=1 m=1

" m(m-—1)---(m—k+1)
[m], m —1], - [m -k +1],

q q
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nz—:l

l
z (=)™ A1 — q)_l Si(n, 1+ 1) gz (Tln> (+1) (m)y_4

m=0

S o~
- O

m
l

Therefore, by (2.9), we obtain the following theorem.

Theorem 4. Forn > 0, we have

B @+ 1] A) = B (x| )

— — m) [m],_,

Note that

: (0,k) (.. o (Ok)
lim (ﬂn,q (z+11X) = 8% (@] N)

n—1
- -1\ (m),_
= ng - nlz LmT(nm)( )kl

[m],_,

k
=ng ﬁ7(L0_17q1) (2).

For n > 0, we have

oC

(2.10) Z BYK (| A) !

m!
m=0

[« 1+---+wk+x]q

= [ AT e (1) - dpy (1)

> u“ m—n - n n- ® m
= Z (2/\ S1 (Trw)z <l> [#], K /l(?Ik)> ml’

m=0 \n=0 =0

Thus, by (2.10), we get

(2.11) BB (x| A) ZZ( )A’” "8y (m,n) [2]2 " g7 5.

n=0 [=0

Note that

lim BOF) (4
lim By (@ | )

m
1—1 k
=3 (7)ot
=By ().

Let us consider the polynomials BfL ql) (z | A) which are given by

(212) MY (x| ) = /

i ([:E+:L'1]q | )\)nqwl(h_l)duq (1), (n>0).

l
(+1)q" (Z (D" X (1 - )T Sy (ny 1+ 1) g™ ( ! ) %) _
0 m=0 B

> l m
=2 (+1¢ (Z ()™ X (1= )T Sy (n, 14 1) g ( ! ) ”ﬁ) _
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From (2.12), we note that

pr—=1
(h,1) — 1 x1h
@13) AU @A) = Jim oo mz:o (o, 1) g
pN -1 [z
1+
= lim A"( q) q"h
N—oo [pN]q wlz_o )\ n
n 1 pN—l
- n—l i o b gTih
_Z)\ Sl(n,l)A}gréc[pT] Z [v +21],q
=0 q z1=0
1
_ l m-+h
=S s -9t S (1) e
; T;] m [m +h],
n l
(1 m+h
An—t H1—q)" ) — T
=3 s e (-0 () 0"

Therefore, by (2.13), we obtain the following theorem.

Theorem 5. Forn > 0, we have

n l
l _ . m+h
(h,1) () — _1)™ \n—l D(1— I ma )
A @I =325 () 0" 0 (-0
Note that
hm i(h 1) (x| N < ) )" mzm—
) ; [m + h],
— }B(h 1) ( )

From (1.7), we have

(2.14)

}LB(}Ll)(L+1|)\) (hl)(.l,|)\)

= qh/ ([;L-+ 14 1], | )\) ™" Vdp, (1) —/ ([.L + 1], | A) g "Dy ()
z 4 n z 4 n

= ngnoc [pN <§)\” 181 (n,1) [p +£ Zx\" 181 (n,1) [z] )
= (= DAY XIS (n, D) [l + Jim_ ﬁ SoAS) (n, D) ([pN +a], — [;L-]g)
=0 9 1=0

=(qg—1) ’LZ/\” 181 (n,1) [.L Z)\" 181 (n,1)1 [.L]l Ygm.
1=0 1=0

Therefore, by (2.14), we obtain the following theorem.

Theorem 6. Forn > 0, we have

d"BUD (x + 1 A) = BUY (x| A)
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q—1)h2/\” 1Sy (n, 1) —4—2/\" LSy (n,1)1 Hl ! q~.
1=0

Note that
hIn q" 6’(h Diz4+1|N)— ,(thl) (| X)) =ng" [z ];L Y4h (¢g—1) [L]Z
Remark. The generating function of ﬁ,(Lh(}l) (x| A) is given by

. [x+zy h—1 h , . "
(2.15) éUHﬂ*‘“Mwm—Z%q N

P n=0

From (2.15), we note that

(216) B 10 = [ (e, 13), 0O @),

P

where n > 0.
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